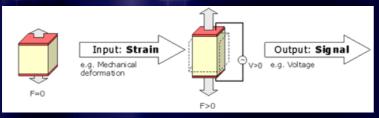
Indesit Company

Digital control of low-cost piezoelectric actuators for household appliances

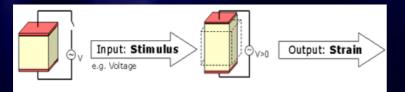
Daniele Petraccini, M. Conti

DEIT, Università Politecnica delle Marche, Ancona, Italy

V. Cascio, F. Nocera, L. Morbidelli Indesit Company S.p.A., Fabriano, Italy


WISES 07 - Universidad Carlos III de Madrid, Spain

Outline


- Piezoelectric devices overview
- Motivations / Strategy
- Prototype illustration
- Hysteresis in piezoelectric actuators
- Proposed hysteresis compensation technique
- Experimental results
- Conclusions

Piezoelectric devices overview

- Discovery of piezoelectric effect: P. and J. Curie, 1880
 Energy conversion (mechanical ↔ electrical)
- Direct piezoelectric effect (\Rightarrow sensors)

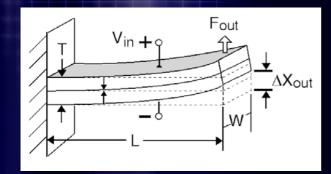
Inverse piezoelectric effect (\Rightarrow actuators)

- Materials
 - natural crystals: quartz, tourmaline
 - after polarization: piezoceramic (BaTiO₃, PbTiO₃, PZT), piezopolymers (PVDF), piezo composite materials

Università Politecnica delle Marche

Piezoelectric devices overview applications

- Typologies of transducers
 - Sensors
 - Actuators
- Fields of application

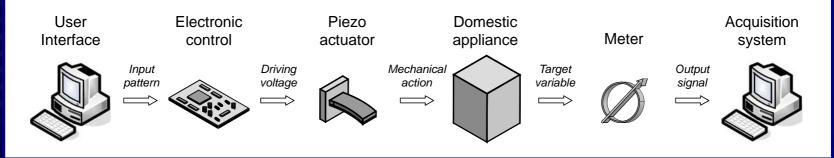


Motivations

- To investigate the possibility of using piezoelectric actuators in domestic appliances as alternatives to classical actuators
 - To exploit the advantages of piezoelectric actuators
 - high stiffness
 - fast frequency response
 - high resolution
- Good accuracy
- Low cost
- Low complexity

Strategy

Bender actuator



Typical parameters

- motion: 100 ÷1000 μm
- ♦ force: 10 ÷ 100 g
- max voltage: 300 ÷ 500 V

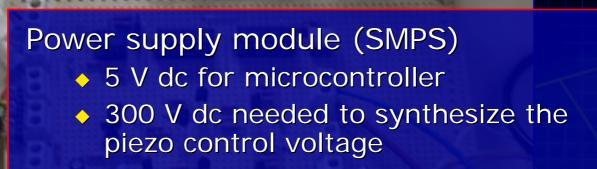
Open-loop control (low cost, feasibility)
Main problem to be solved: hysteresis!

Prototype schematic representation

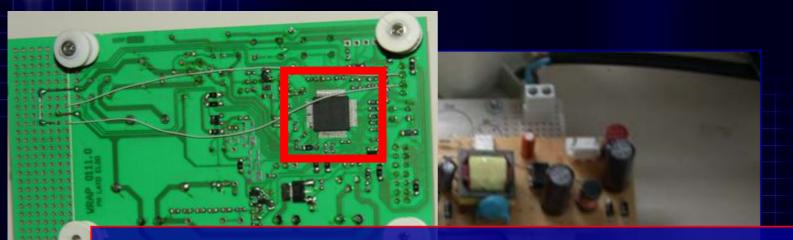
User Interface: software program running on a PC

Electronic control: elaborate the input signal, supply the piezoelectric actuator with the proper voltage

Piezo actuator: capacitor; the applied voltage determines the entity of the mechanical deformation


Domestic appliance: mechanical, thermodynamic, fluid dynamic system inside the domestic appliance

Meter: provides the measure of the physical variable to the Acquisition system

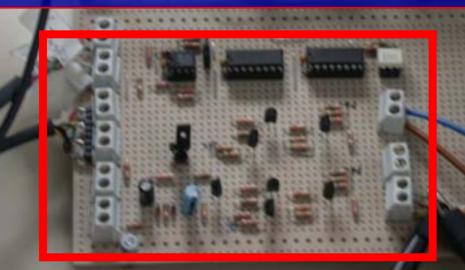

Acquisition system: PC

Università Politecnica delle Marche

Prototype electronic board - 1

Prototype electronic board - 2

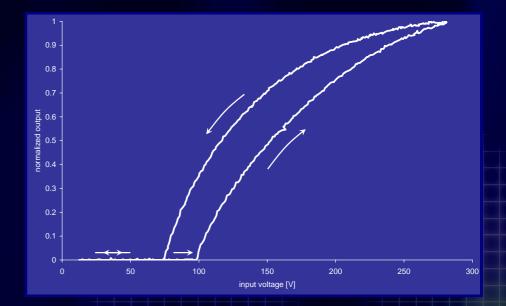
Control module (microcontroller)


- communication with the UI (standard RS-232 serial line; Indesit proprietary communication protocol)
- decoding of input pattern and conversion into the corresponding voltage pattern to be generated
- generation of the control signal for the piezo actuator interface (PWM signal; closed loop-control of voltage signal; PID control algorithm)

Prototype electronic board - 3

Piezo actuator interface (analog circuit)

- adapts the 0-5 V PWM signal from the microcontroller to the 0-285 V range
- generates a continuous voltage in the range up to 285 V dc (uses a LPF)


voltage feedback to the microcontroller

Università Politecnica delle Marche

Prototype response without hysteresis compensation

- Main hysteresis loop of the system
 - Input voltage: 0-285-0
 - Output: normalized

- The hysteretic behaviour of the piezo device is reflected to the output quantity
- Effect: the entity of the deformation (output) of the piezo actuator is influenced by the history of input

Hysteresis in piezoelectric actuators approaches for compensation

- I. Electric charge control (Newcomb and Flinn): the linearity of piezoceramic actuators can be improved if an electric charge is applied and varied to control the deformation. Issues: it needs specially designed charge amplifier, good linearity cannot be guaranteed in a wide frequency range.
- 2. Closed-loop displacement control. Typically: strain gauges are used as feedback sensors. Good results, but additional cost.
- Open-loop control: linear control with feedforward inverse hysteresis model. Idea: find a proper model of the hysteretic behaviour of the piezo actuator and use its mathematical inverse in the control chain.

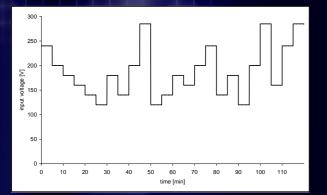
Hysteresis in piezoelectric actuators proposed compensation technique

Key factors

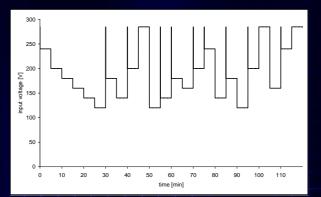
 fast frequency response of the actuator (50 ms to cover the whole voltage range)

- inertia of the physical appliance (LPF response)
- stepwise variables (the output varies according to levels)

 Idea: biasing the actuator to the upper branch of the hysteresis curve, hence making it to work in a well defined path

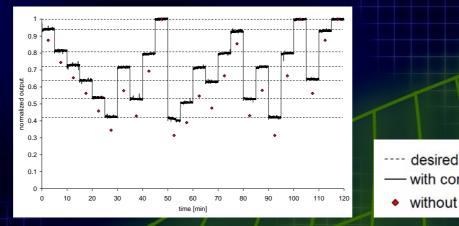

Hysteresis in piezoelectric actuators proposed compensation technique

Method: applying a transformation to the stepwise input signal as follows:


- \diamond step-down transitions (VH \rightarrow VL): unchanged
- step-up transitions (VL → VH): converted to a combined transition (VL → VMAX → VH)
- Effect: the stable operating points of the piezo actuator lie in the upper branch of the hysteresis curve, resulting in a nonlinear hysteresis-free behaviour
- Implementation in the digital system (64-pin, 8 MHz microcontroller; 4 KB assembly code)

Experimental results

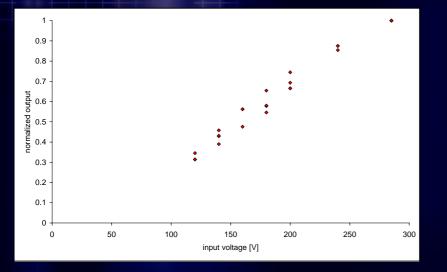
Input pattern used in the test (7 levels, 24 steps)


Voltage signal produced by the controller

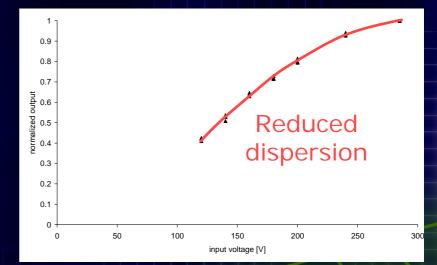
with compensation

without compensation

Output with compensation and without compensation



Università Politecnica delle Marche


Experimental results

Scatter diagrams

without compensation

with compensation

Error reduction

- maximum error: reduces from 9 % to 2.8 %
- average error: reduces from 5.3 % to 1.3 %

Università Politecnica delle Marche

Conclusions

- We have presented a new digital open-loop control of piezoelectric bender for real-time applications when low cost is a fundamental requirement
- Preliminary results for the prototype realized in Indesit Company laboratories show the effectiveness of the proposed technique, which allows for a good hysteresis compensation
- The illustrated technique is suitable to be directly implemented in the same microcontroller already present on currently marketed appliances
- Piezoelectric actuators seem to be interesting for future applications on domestic appliances...